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A New Graph Expansion of Virial Coefficients
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It is well known that the virial coefficients of the pressure of thermodynamic
systems can be represented in terms of graphs. The existing graph expansions
are compared with a new one, the overlap graph expansion. The merits of
overlap graphs in general and especially for hard disks and spheres are dis-
cussed.
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1. INTRODUCTION

If the pressure of a real gas is expanded in powers of the density, the
corresponding coefficients are called virial coefficients. They consist of
cluster integrals which may be represented by graphs.!” The expansion in
so-called Mayer graphs or star graphs is well known.(*® Ree and
Hoover™® introduced the modified star graphs or Ree-Hoover (RH)
graphs. This modification simplified the graph expansion and enabled Ree
and Hoover to evaluate the sixth and seventh virial coefficients for hard
disks and spheres. In the present paper, a further simplification will be
investigated which leads to a new graph expansion of virial coefficients, the
“overlap graph expansion.” Throughout the paper, the expressions clusters,
(cluster) integrals, and graphs will be regarded as synonymous words.

We assume that the potential energy U can be represented as the sum
of pairwise interactions,

U= Zuj Uy = u(ry) ()
i<j

the pair interaction being only a function of the distance r;. Furthermore,
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we abbreviate the Boltzmann factor in the following way:
fy=1+f;=exp(—u;/KT) 2)
f; being the Mayer f function, f; the modified f function.” Then, the

configurational partition function for a system of N identical molecules can
be written as

QN[V:l:J;“'Ldrler“'drNHf;"j

i<j

=fV- . derldrz---drNLIj(l +£;) 3)
Expanding the product [](1 + f;) in products of f functions yields the
deviation from the ideal gas where f; = 0. Since we are interested in systems
with high N, we will neglect surface effects (at the boundary of the volume
V). Thus, the integration over r, in (3) yields just the factor V, and we
assume in the following that molecule 1 is located at the origin. The
pressure P follows from the knowledge of Qn[V1]:

P _ 1 aQN[ V]
kT oy V] v

N, T

NV (NN = )y dr, fo + OO

pN 4 (I;)VN_'derzf]z+ oV

_N_(N)(LY 1y
=5 -(3)(5) J o o(3) @
For symmetry reasons,
fdrz e dry Hfij= (lzv)fd"z ceedry fip= (IzV)VNﬁzf dr; fi
Furthermore, the approximation
5817 f dry f1,=0

has been used due to the neglect of surface effects. The full expansion in
the number density p = (N/ V) yields the virial series

p—II:T =1+ Zan(N)p"'l (3a)
P (thermodynamic limit) = 1+ > B,p""' (5b)
ka n=2

The B,(N) are number dependent. The additional dependence on T has



A New Graph Expansion of Virial Coefficients 535

been suppressed as in the cases f;, f;., and Qy[V]. From (4) it follows that
- 1
ByN)y=(1-N"YB,, By=-— 5[}/&2}12 (6)

Extending (4) to lower order of ¥, B, can be obtained (n > 2) as a function
of cluster integrals® like [dr, f,. Deviations from the thermodynamic
limit are twofold: First, the N dependence comes in which is independent
of the shape of the volume, cf. (5a) and (6). This correction is included in
(4) and is well known(® The second correction {due to the volume
dependence of the cluster integrals) is much more complicated™® and will
be considered again in Section 5.

2. MAYER GRAPHS

Now we turn to the B, which are valid in the thermodynamic limit.
The Mayer cluster integrals occurring in B, can be represented as graphs
with n corners™®; see Fig. 1. Each corner corresponds to a variable.
Variables represented by black circles are integrated over; the white circle
indicates an arbitrary but fixed location (e.g., of variable 1). A bond
(straight line) between the corners i, j means f;; no bond between i and j
corresponds just to the factor 1 in the integrand. Mayer graphs are
characterized by the restriction that they are doubly connected, i.e., they do
not have an articulation point.!D In case of an articulation point, the
cluster integrals would be equivalent to a product of Mayer graphs. Figure
| shows the Mayer graphs up to n = 5 together with their designation.®>?
The notation (m), means that the Mayer graph has » corners, m being the
graph number® due to Ref. 3. The numbering of the corners is irrelevant;

~Anmr O
(1),

(, 1, (0, (2, 3, (2),

WA e &R
(3, (4 (Sl (6} (7)s (8)s (10},

{S)g

Fig. . The Mayer graphs up to 5 corners.

2 The value of a Mayer graph may be positive or negative now. Hoover and DeRocco™ took
always the absolute value for D-dimensional parallel hard cubes.
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i.e., graphs which differ only in the numbering of corners will be identified
in the following.

For n =5, a comparison of several designations of the Mayer clusters
has been given.”> Unfortunately, there has been a misprint in the second
column of Table I of that paper. The correct succession of numbers should
be 1,2,3,4,5,6,8,7,9, 10. This means that the designation of Mayer clusters
has been analogous to the present paper, except for an interchange of the
numbers (7)s and (8)s.

The virial coefficients up to By are

B, = ~3(1), (72)
By=—3(1), (7b)
B,= — i (3(1), +6(2), + ()} (7¢)

Bs= ~ 4 {12(1), + 60(2), + 10(3), + 10(4) + 60(5),
+30(6), + 30(7), + 15(8), + 10(9), + (10),} (7d)

The number of integrals is a quickly increasing function of n. Moreover,
experience shows that the contributions of the graphs almost cancel each
other for several simple potentials if »n > 4.(1* Therefore, the resulting
virial coefficients are relatively small and thus inaccurate if the cluster
values are not known very accurately. There have been early attempts to
simplify the calculation of virial coefficients."'® Using Eq. (2), one can
evaluate for instance [(6)s + (7);] at once (see Fig. 2, f; being represented by
a dotted line). This increased the accuracy of Bj for hard spheres.('9

3. REE-HOOVER GRAPHS

The integrand of Qy[V] is a product of f functions, cf. (3). Using (2)
yields virial coefficients with cluster integrals where two variables may have
no bond or a f bond, cf. Fig. 1. Figure 2 shows an example where re-

introducing a f~ bond simplifies the calculation of a virial coefficient. Ree
and Hoover™” found a systematic simplification using f and f bonds. The

%08 = I &

Fig. 2. The interpretation of (1 + f, = f:j) in terms of graphs, together with an application.

0O o+ 00 = 0---0
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Fig. 3. The RH graphs occurring in the graph expansion of B, up to n =5.

resulting RH graphs are characterized by the fact that each pair i,/ is
connected in any case, but the bond may be either f or f A RH graph 18
generated by inserting a f bond between every pair i, j which is not
connected in the corresponding Mayer graph. Thus the number of RH
clusters and Mayer clusters is the same for any n. The RH graph corre-
sponding to the Mayer graph (m), may be called (m),; see Fig. 3. Using
Eq. (2), every RH graph may be written as a sum of Mayer graphs and vice
versa. If this is done for the known Mayer graph representation of B,, it
follows for B, to B that

B,=—1{1), (8a)
By = ‘%<1>3 (8b)
— 3 {3104 — 2(3)4) {8¢)

By = — & {12{1)5 + 10{3)5 — 60(6)5 + 45(8)5 —~ 6{10>5) (8d)

This means for B, and B a simplification compared with (7). Not all of the
RH graphs have a coefficient %0 and do really occur in the RH graph
expansion of B,. The occurring RH clusters up to #n = 5 are shown in Fig.
3. Using RH clusters is even more efficient* for B and B;.

Now we turn to the hard-sphere potential in D dimensions (D = 1,2,
3). If the hard spheres have the diameter g, it follows from (2) that

fi=0@;—0)>0, f;=-8(c—r)<0 )

where O is the Heavyside step function. Thus, the sign of the value of any
Mayer or RH cluster integral is given by the number of f functions. If the
graph has an even (odd) number of f functions, the value is > 0 (< 0). The
combination of f and { bonds in RH clusters results in small absolute
values. For example, (10); = (10)5 has the smallest absolute value of all
Mayer clusters, but the largest one of all RH clusters (D = 1,2,3). Some of
the RH graphs have zero value for hard-core potentials(*® which increases
the accuracy of B, further. From Eq. (9) follows a simple interpretation of
the graphs shown in Fig. 4. I(1,2, . . ., k) is the volume of intersection of k
overlapping D-dimensional spheres of radius ¢.>'" I(1) is just the volume
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f

1 T2 123 1234 12345
-I{1) 1(1,2) -1{1,23)  1(1.234) -1{123.4.5)

Fig. 4. The interpretation of several graphs in terms
of intersections of overlapping spheres.

of one sphere. For instance, (3), = (3), can be written as

<3>4=fffdrzd"zdr4f12f13f14f23f24f34
= [ [dadnd (V20 afufo= [ [ drdsl(.23) (10

r;<o

Expressing Mayer or RH cluster integrals in terms of overlaps made it
possible to increase the accuracy of virial coefficients of hard disks and
spheres.(*121> The case D = 1 (hard rods) is already known exactly.**!)
The problem of overlapping disks has been solved completely; the three-
dimensional case can be solved in an analogous way.('""'¥

4. THE FORMALISM OF LESK

A completely different way of representing virial coefficients for D-
dimensional hard spheres is due to Lesk.'> Since the paper contains a few
errors, a short corrected version shall be given now. From (3) and (9) it
follows that

QN[V]=fV...derl...drN I o@,—o) (11a)

1<i<j<N

Ovei[V] =fV‘ o del'l ceedry

I<i<j<N

N
x { I e- 0)[fvdrN+lkr=Il@(rk’N+l - o)”

=fV“‘de'1"‘d'N{ I @(rij—a)Va(l,...,N)}

1<i<j<N

(11b)
V,(1,..., N) is the accessible volume, ie., the volume accessible to an-
other particle in the presence of N particles at the positions ry, ..., Iy.

V,(1,..., N) may be written'"” in terms of intersections of spheres with
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radius o, cf. Fig. 4:

N
Va(l,...,N)=V~§lI(i)+ >3 I, ))

1<i<j< N
- XXX (k) (122)
1<i<j<k<N
V,(1,2) = V =211y + I(1,2) (12b)

V,(1,2,3) = V= 31(1) + I(L,2) + I(1,3) + 1(2,3) — 1(1,2,3) (1)

Since the volume of each sphere is the same, it follows that 3 (i) = NI(1)
for any configuration. From (11b) it follows that

Ovar[V]={V— NI} Q[ V] + (];’)Vfr2>odr21(1,2)QN_2[ V,(1,2)]

(M) ([ dndni0,23)0,-[V.0,2.3)] + -
e (13)

I<i<j<3

To obtain (13), the same simplifications have been used as to get (4), i.e.,
symmetry arguments (change of variables) and the neglect of surface
effects. If N is high, it follows that ¥ > I(1). Thus, it seems to be justified
that Qn_,[V,(1, ..., k)] can be substituted by Q,_,[V]; compare Egs.
(12). This yields

Onai[V] = (V= NI(1)} Qu[ V] + V((g/)QNJ[ V[ dnI2)

12206

-(13V)QN_3[V]ffdrzdr3i(1,2,3)+ e } (14)

rg>o

This is a recursion relation for Qn[ V). To solve it, we assume that Qy[V] is
only a function of V' (the measure of the volume) and not of the shape of
the volume. Then, from (14) Q,[V] can be determined as a double power
series in N and V. Knowing Q,{V] it is possible to calculate the virial
coefficients, cf. Eqs. (4) and (5). If this is done, it turns out that B, and B,
are given correctly for hard disks and spheres, but that B, is wrong.
Therefore, we have to go further than Lesk and start again with (13). It is
possible to solve (13) directly without substituting Q,_,[V] for
Onv_i[V,(1, ..., k)] Again it is necessary to assume that Q,[V] is not a
function of the shape of the volume (neglect of surface effects). Then, the
structure of the recursion relation (13) induces that Qy[¥] can be repre-
sented in the following way:

0

ON[V]=V" 3 G NV =¥V ﬁ G, (N~ (15)
oo ]

m= — m=
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The coefficients G,,(N) will be specified below. The equality of the two
sums corresponds to the fact that G,(N) =0 if m > N or m < 0. The ideal
gas (f,.j = 0) yields Qy[V]= V"; see (3). Thus G,(N)=1 for-any N, the
other G,,(N) vanish for the ideal gas. Combining (13) and (15) yields

G(N +1)= G, (N) = NI(1)G,,_(N)
N S (N -2 B
+(2)£1z>odr21(1)2)h§0( h )Gm”"‘z(N 2)
x [ =21(1y + 1(1,2)]"
X[ =310y + 1(1,2) + I(1,3) + 1(2,3) - 1(1,2,3)]"
- (16)

For any m, (16) contains only a finite number of terms. For instance,

1j> o

];/)ffdrzdrﬂ(l,z,:;):z;i(N; )6, 0¥ -3)

Go(N + 1) = Go(N) =0 (172)
G(N + 1) — Gy(N) = = NI(1)Gy(N) (17b)
Gy(N + 1) = G(N) = = NI(1)G,(N) + (g)frmdgz(l,z)so(bf— 2)
(17¢)
Gy(N + 1) = Gy(N )= ~ NI(1)G(N ) + (g’)frmdrzl(l,z)F
- (];f)ffdrzdr3l(l,2,3)Go(N—3)+ L (17d)

F=(N-2)] ~21(1)”; 1(1,2)]Go(N = 2) + G(N - 2)

Thus, G,(N+1)— G,(N) is expressed as a function of Gy(N),
...,G,_{(N). From (3) it follows that Q,[¥V]= [dr, = V for any poten-
tial, i.e.,, Gy(1)=1 and G, (1)=0, m>0. G,(1)=1 gives together with
(17a) the result Go(N)=1 for any N. This is the starting point of the
recursion. Furthermore, it is easy to obtain G,,(N) from the knowledge of
G, (N+ 1)~ G (N)

m>0:{G,(1) =O}=>{GM(N) = Nil [Gu(N' + 1) = G, (N)],N > 1}
N'=1

(18)
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G,(N) comes out as a power series in N (highest power: 2m). Therefore,
On[V] of D-dimensional hard spheres is represented at last by a double
power series in N and V, the coefficients—apart from trivial numbers—
being cluster integrals of the form CI(k,/):

Cl(k’1)=f,> e [y de (<12 R)
>0

I<i<j<k

x I (=H*I(m,...,n)
(=k-1D (19)

l<n1<~-~<nq<k, g>1

or products of such integrals. (/ — k — 1) beneath the product sign means
that there are (/ — k — 1) factors of the type I(ny, ..., n,). The same
CI(k,1) also occur in the virial coefficients; cf. (4), (5). For D-dimensional
hard spheres, it is easy to know whether CI(k,/) vanishes or not. For
instance, it is not possible that more than five disks have an intersection
#0 with r, > o for all pairs i, 7.0 Thus, CI(k,1)=0 if and only if
k>5. The corresponding numbers''" for rods (D =1) and spheres
(D = 3) are 2 and 12, respectively. This means for instance that for hard
rods the expansion (16) stops with the term (§){ - - - since the subsequent
terms consist only of integrals of the type CI(k, 1),k > 2, which are all zero.
Equivalently, (16) stops with —(3)[ - - - for disks and with +(})f - - - for
spheres.

Lesk tried to develop virial coefficients for hard disks and spheres. If
one checks the derivation of his (corrected) results, one can see that it is a
general formalism. If one uses f and f, Eq. (2), instead of © functions, Eg.
(9), all steps remain valid. One has to insert the graphs shown in Fig. 4

instead of the hard-sphere interpretation (—1)4(1,2, ..., ¢). The restric-
tion r; > 0, 1 <i<j <k, in the term (= 1)*()[ - - - of (16) turns into f
bonds between each pair of the variables 1,2, ...,k Thus the Lesk

formalism gives at last a general graph expansion of virial coefficients
which is different from the Mayer and RH graph expansions. The general
graph theoretical description of CI(k, ) is as follows: CI(k,/) has [ corners
(I > 2), one of them (e.g.,, corner 1) being a white circle, the others are
black circles. If / =2, then & = 1. If~l > 2, then 1 < k < I. Each pair of the
corners 1, . . ., k is connected by a f bond. The remaining / — k corners are
not connected among themselves, but are connected by f bonds with at
Jeast two (one if k& = 1) corners out of the first k& corners. At least one of the
corners k+ 1, ...,1 is connected with all corners 1,2,...,k. Such a
graph will be called an overlap graph of the first kind. “First kind” refers to
the last restriction mentioned, “overlap graph™ refers to the simple interpre-
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tation in the case of overlapping spheres, Eq. (19). Explicit resuits of this
graph expansion will be given in the next section.

5. EXPLICIT RESULTS

The (products of) overlap graphs of the first kind which contribute to
B,, n < 4, are exhibited in Fig. 5. They are of the type CI(k,n), k < n—1,
or products of CI(k;,n;) with k; < m; — 1, 3(n; — 1) = n — 1. Since all pairs
of corners 1, ..., k are connected by f bonds (dotted lines), a simplified
drawing (the pomts 1, , k lying on one dotted line) is possible and will
be used in the following The cluster integrals CI(k,n) are denoted [m], if
(m) is the Mayer graphs with n corners which is generated by replacing all
f bonds in CI(k,n) by f bonds. The designation of products, e.g., 1B
= [1},[1],, is analogous.

Graph [2], is not obtained using the recursion relation (14) instead of
(16). Thus, (14) yields an incorrect B, as mentioned above. Relation (16),
however, yields all overlap graphs of the first kind and leads to a correct
fourth virial coefficient. The number dependence B,(N) is also given
correctly, see below. All (products of) overlap clusters with n corners really
contribute to B,.

The expansion of the graphs shown in Fig. 5 in terms of Mayer graphs
yields:

n=2: [1],=(), (20)
n=3: [1];=(1), (21a)
[15=(1) (21b)

n=4: [2]4 (1)4 + (2)4 (22&)
[314=3@),+ (), + 3(1),(0; + (1) (22b)

[ ]2[ 1 ]3 (1)2(1)3 + (1)2 (220)
[1=() (224

3

M, M), 0 (2], (3], (L0, 110

2

Fig. 5. Overlap graphs of the first kind (and their products) which contribute to B,, Bj,
and By.
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Table I. Cluster Values of D-Dimensional Parallel Hard Cubes. The
~ (Products of) Overlap Graphs up to » = 4 are Exhibited

Rods Squares Cubes
(Products of) Ix 12 X 432 X

n  Overlap Graphs  value/B5 ™' value/ B ! value/ B5 ™!
2 {1} -6 —24 —864
3 [, 3 21 999
[113 12 48 1728
4 (2ls 2 10 338
(3L 0 -8 —708
(1L,[1 —~6 - 42 - 1998
1B —24 —96 — 3456

The explicit values for these graphs in the case of D-dimensional parallel
hard cubes are shown in Table I. They are based on the Mayer graph
values which are known analytically up to n = 7.(¥ Now we turn to the
explicit representation of B,(N), n < 4, via overlap graphs of the first kind.
To do this, we start with G, (N), Eq. (15). Combination of (17) and (18)
yields

Gy(N) =1 (23a)
GuN)=3[1](N*~N) (23b)
Gy(Ny=#[1](N? = 3N +2N)

+ £ [1]53N* — 10N° + 9N? —2N) (23c)
Gy(N)=4[2](N*=6N*+ 1IN~ 6N)

+ % [3](N* - 6N+ 1IN? —6N)

+4;[1],[1]52N° = 1IN* + 16N> — N> — 6N

g [1(NC—TN°+ 1TIN* ~ 1TN° + 6N?) (23d)

Comparison of the expansion of Q,[V] in powers of V, Eq. (15), with the
virial expansion, Eq. (5a), results in relations between the G, (N) and the
B,(N), cf. (4):

By(N)= —Gy(N)/N? (24a)
By(N)=—{GyN)~ GE(N)}/N3 (24b)
By(N)= —{Gy(N)—3G(N)Gy(N) + GE(N)}/N“ (24c)
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Thus, from the known G, (N), Egs. (23), it follows that
B,=—1[1], By(N)=(1-w)B, (25a)
By=—1[1];,  By(N)=(1—w)1-2w)B;+2w(l—w)B; (25b)

By= —{3(2]a+[3] —3[1%:[1]s +2[1]}
By(N)=(1—w)(1—=2w)(1 =3w)B,+ 9w (1 — w)(1 —2w)B,B,
~4w(l — w)(1 —3w)B; (25¢)

w being (1/N). Developing the overlap graphs of the first kind in Mayer
graphs, Eqgs. (20)~(22), confirms the correct representation® of B,, B, and
B,. The B,(N) are also given correctly® up to n =4. The (products of)
overlap graphs of the first kind yielding B, are shown in Fig. 6. The graph
[5]s is not an overlap graph of the first kind and will be treated later. As to
[71s, the first of three equivalent representations (Fig. 6) is chosen from now
on. G,(N) and B(N) can be evaluated in the same manner as above, Egs.
(23)—(25). The result is that Bs(N) does not come out correctly:

BIK(N) — BSY(N Yy = L(1 = w)(1 — 2w)(1 — 3w)(1 — 4w)
X {2(1); + 6(2) + 4(5) + (6),

+ (D5 + 2150, + 2013} (26)
Thus, even the corrected and improved Lesk formalism fails, and it fails for
an interesting reason: The only approximation used was the assumption
that Q[ V] is only a function of ¥ and not of the shape of the volume; see
Section 4. This is a problem closely related to the volume-dependent
correction of virial coefficients(” mentioned in Section 1. However, this

‘Qf&%‘@'v

o Gy

Iy

(1,021, 11031, 0 L1, [

Fig. 6. Overlap graphs and their products contributing to Bs.
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latter correction vanishes in the thermodynamic limit, while the discrep-
ancy between BF®¥ and B$* does not. Even if V' goes to infinity, the
shape of the volume excluded, e.g., by particles 1, 2, and 3 remains a
function of the actual locations of these particles. It is well conceivable that
the differences between BI** and B will throw more light on the
volume dependence of virial coefficients which is not yet well known.

The fact that B&** is the first incorrect virial coefficient can be ex-
plained for hard spheres as follows: The shape of the volume common
to two intersecting spheres (radius o) is determined by its measure
[V — V,(1,2)] = [21(1) — I(1,2)]. On the other hand, it is possible to locate
three spheres in different ways yielding the same volume [V ~ V,(1,2,3)].
Thus, neglecting the shapes of volumes starts to be crucial with the term
- (Q’)Vf -+ - in Eq. (13), which contains Qy _3[V,(1,2, 3)]. However, the
first approximation to Qy_;[V,(1,2,3)] is QuIV]. Thus, the coefficients
G,(N) up to Gy(N), Egs. (16) and (17), are not affected by the above-
mentioned neglect. Equations (24) show that this induces B,** to be
correct up to n = 4. This is no longer the case from BL** on.

6. THE CORRECT OVERLAP GRAPH REPRESENTATION OF B;

The result of Section 5 concerning Bs seems to be discouraging.
However, it is possible to obtain the correct fifth virial coefficient by
generalizing the definition of overlap graphs. B¢ and B, will be considered
in the next section.

First, we analyze the discrepancy between BI** and B further.
That BL®* is not correct can be seen from a simple fact (cf. Fig. 6): None
of the four overlap graphs of the first kind [4]s,[7]s, [91s, and [10]5 yield (1)s
if they are expanded in Mayer graphs. Since (1); occurs in Bs, Eq. (7d),
BX** cannot be correct except for the hypothetical existence of a relation
among the (m); valid for any potential.

The restriction which specified the “first kind” of an overlap graph was
the requirement that at least one corner out of K + 1,. .., n is connected
with all corners 1,...,k by f bonds. In the following, we define a
(generalized) overlap graph by replacing the above restriction by a weaker
one. It is now only required that each of the corners 1, .. ., k has a f bond
to one or more of the corners k + 1, .. ., n. A check of the overlap graphs
up to n =4 yields that they are automatically of first kind. For n =35,
however, there exists one overlap graph which is not of first kind, see Fig. 6.
It is called [5]5 using the same numbering rule as for overlap graphs of the
first kind, Section 5. Expansion in Mayer graphs yields

[5]5= (15 225+ (5)s+ (L3 + 2(1)3(1);+ (1), @7)
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Table Il. Cluster Values of D-Dimensionai
Hard Cubes, n =5

Rods Squares Cubes

(Products of) 6% 1152 x 221 184 %
Overlap Graphs value/ B3 value/B; value/ B3
[4]s 3 558 77 868
{515 3 2735 1034 319
s 0 - 359 - 119619
%15 0 120 31 440
[10]5 0 102 160 878
[1L12]4 -8 - 1920 — 346 112
[1L{31, 0 1534 724 992
(13 6 3528 1182816
B, 24 8 064 2045 952
(13 9% 18 432 3538 944

Thus, (1), is occurring now. In fact, the difference between Bs™* and
B&2° Eq. (26), can be represented in overlap graphs when including [5]s:

By — By =4 (2[5]s+ [T, - 112~ 2[1 511} (28)
By the way, the lack of [5]s in the Lesk formalism does not change Bs(N) as
long as N < 4, see Eq. (26). This is consistent with the fact that clusters

with five variables do not come in as long as there are not more than four
particles. The correct Bs expressed in overlap graphs is

B~ — 4 (6[4]5 + 12[5]5 + 18[7]5 +4[9]; +[10], - 18 1],[2],

—4[1[3), - 15[ 3+ R[], - 6[13) 9)
The analytical values of the (products of) overlap clusters contributing to
B are exhibited in Table II for D-dimensional parallel hard cubes.””
Furthermore, the numerical values of all (products of) overlap clusters up
to n=35 are shown in Table III for D-dimensional hard cubes and
spheres.>*12 To facilitate the comparison, all values are exhibited in the
units (2B,Y" " in Table II1. Thus, {1127" has the absolute value 1 for all »
and potentials. All numbers are exact within the given digits apart from
[10]s, spheres, which has an uncertainty of =0.0000025. In most cases, the
small difference between the results for spheres and cubes of the same
dimension is remarkable. For rods, the clusters with zero value are of the
type CI(k,1),k > 2; compare (19). These graphs have small absolute values
for the other potentials included in Table III.
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Table IV. Hard-Disk Values of the Overlap Clusters Contributing to B;

Cluster Value/ By ™! Cluster Value/ B3
(1}, -2 [4], 0.4197 6985 76
[l 1.6539 8686 63 [5]; 2.0836 1785 32
2L 0.7630 6855 23 7l —0.2153 3487 (2)
3L, —0.4709 8023 05 9] 0.0668 8661 6(2)
(10}, 0.0208 59(1)

“The number in parentheses denotes the uncertainty of the last digit.

The overlap graph representation makes it possible to determine for
instance Bs (hard disks) with an improved accuracy. The five products
occurring in (29) are known analytically since this is the case for all Mayer
clusters!'® up to n=4. [4]; is also known analytically since [4]s = (3)s +
(4)s, the values of both Mayer graphs being known.(¥ Using simplifications
analogous to Ref. 9, [5];, [7]s, and [9]s can be evaluated directly by at most
threefold numerical integration, the integrand being for instance 1(1,2,3)
for [9)s. [10]; is a fivefold integral with the integrand I(1,2, 3,4). However, a
more accurate estimate follows from the fact® that (35 = 0 for hard disks,
cf. Fig. 3. Inserting the best values for the Mayer graphs® yields [10],.
Table IV shows the resulting values of the overlap clusters contributing to
B for hard disks. It follows that B,/ Bj is 0.33355604 + 0.00000004. This
may be compared with the best value up to now,® 0.3335561, the last digit
being uncertain. The improvement in accuracy comes from the direct
calculation of [5]s, [7]s, and [9]s. The main error of Bj is due to [10]s.

7. DISCUSSION

We will compare now several properties of Mayer graphs S,(n), RH
graphs S (n), and (products of) overlap graphs with n corners. The proper-
ties of overlap clusters have only been confirmed up to n =5 so far. As for
B and B, see below.

All Mayer and overlap graphs with n corners contribute to B,. This is
not the case for the S(n) No products of clusters occur in the graph
expansion of B,: This is true for S;(») and S (1), but not for the overlap
clusters where all possible products occur. All three graph expansions can
represent the virial coefficients. The number of S,(n) and S~'j.(n) is the same,
the number of overlap clusters is smaller for n > 3.

The coefficient of a Mayer graph in the expansion of B, follows
directly from the symmetry(*¥ of the graph. On the other hand, the
coefficients of §j(n) have to be evaluated indirectly*> from the known
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coefficients of S;(n) and the transformation S;(n)—> §j(n). Using a simple
criterion,’"? however, one can determine most of the RH clusters that are
not occurring in B,, i.e., with a coefficient = 0. As to overlap clusters, the
direct way from Qy[¥] to the B, via the Lesk formalism is no longer valid
from Bs on. Therefore, one has to choose also the indirect way for overlap
graphs as in the case of S (). The expansion of overlap graphs in terms of
Mayer graphs up to n = 4 is exhibited in Egs. (20) to (22); the transforma-
tion tables up to » = 6 are given in Ref. 17.

Table V shows the number of Mayer, RH, and (products of) overlap
graphs with n corners up to n=7. It is by no means evident that the
relatively small number of overlap clusters makes it possible to express By
and B, properly. However, we will formulate the following conjecture: It is
possible to express B, for any n in terms of overlap graphs, and also the
other above-mentioned properties of overlap graphs are valid for any n.
This conjecture was the starting point to determine the coefficients of the
overlap graphs for Bg and B, in the described indirect way. This will be
treated in another publication; the main result is: The above conjecture
turns out to be true for n = 6 and 7. For n < 5, it is known to be valid from
the present paper. Table V shows that the graph expansion in terms of
overlap graphs is the simplest one. The occurring products do not matter
since they are already known from the knowledge of lower virial coeffi-
cients. Apart from the number, the structure of the overlap graphs is
advantageous. It is easy to write down all overlap graphs up to n=7
without much meditation, which would be impossible for Mayer or RH
graphs. For example, Fig. 7 shows all overlap graphs of the first kind
CI(3,n), cf. Eq. (19), up to n = 7. Finally, we will discuss the merits of the
overlap graph expansion for hard disks and spheres. The smaller number of
graphs helps to improve the accuracy of B,. In RH graphs, each pair of
corners is connected by a f or f bond which makes Monte Carlo integration
necessary for any S, (n) with n > 5.4 The simpler structure of overlap

Table V. Comparison of the Number of Overlap, Mayer, and RH Graphs
QOccurring in B;

Overlap Products of Mayer RH
n graphs overlap graphs Total graphs graphs
2 1 0 1 1 1
3 1 1 2 I I
4 2 2 4 3 2
5 5 5 10 10 5
6 14 12 26 56 23
7 44 35 79 468 171
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WQ/@

(3, [7), (9], (28], [29], [40], [49]

> 13 [ XN
¥ W % W % W

[158], [159], [162], [252], [254], [335], [393],

Fig. 7. Overlap graphs of the first kind CI(3,n) up to n =T7; cf. Eq. (19).

graphs makes it possible to interpret any of them as the integral over
(products of) intersections. The graphs shown in Fig. 7 contain intersections
of at most three disks or spheres. These clusters can be evaluated by
threefold numerical integration. Since the integral regions‘!" of variable 3
are only determined by I(1,2,3), all integrals shown in Fig. 7 can be
calculated at once. The validity of the corresponding computer program
can easily be checked since the first graph, [7]s, is known accurately; see
Table IV. Furthermore, it is of advantage that the most complicated
overlap graphs have small absolute values. For instance, all graphs CI(3,7)
shown in Fig. 7 are of zero value for hard rods since k& > 2, cf. Eq. (19).
Correspondingly, all CI(k,n) with k& > 5 vanish for hard disks, and all
CI(5,n) which necessitate Monte Carlo integration are very small. Thus,
the overlap graph expansion seems to be promising not only from a general
point of view, but also for specific potentials.
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